CARATHÉODORY BALLS AND NORM BALLS IN $H_n = \{z \in \mathbb{C}^n : ||z||_1 < 1\}$

BY

URI SREBRO*

Department of Mathematics Technion—Israel Institute of Technology, Haifa 32000, Israel e-mail: MAR21AA@TECHNION.TECHNION.AC.IL

In memory of Albert Pfluger

ABSTRACT

It is shown that the only balls in the Carathéodory distance on $H_n = \{z \in \mathbb{C}^n : ||z||_1 < 1\}, n \ge 2$, which are balls with respect to the ℓ_1 norm in \mathbb{C}^n are those centered at the origin.

1. Introduction

Consider the unit ball

$$H = H_n = \{ z \in \mathbb{C}^n : ||z||_1 < 1 \}$$

in the complex *n*-space \mathbb{C}^n with respect to the metric which is induced by the ℓ_1 norm in \mathbb{C}^n

$$||z|| = ||z||_1 = \sum_{k=1}^n |z_k|, \quad z = (z_1, \dots, z_n) \in \mathbb{C}^n.$$

Next consider the Carathéodory distance $C = C_H$ on H

 $C(z,w) = \sup \rho(f(z),f(w)), \quad z,w \in H,$

^{*} The research was partially supported by the Fund for the Promotion of Research at the Technion. Received November 3, 1993

where the supremum is taken over all holomorphic functions f from H into the unit disk

$$\Delta = \{ z \in \mathbb{C} : |z| < 1 \}$$

of the complex plane \mathbb{C} . Here ρ is the hyperbolic distance on Δ :

$$\rho(a,b) = \frac{1}{2} \log \frac{1+\alpha}{1-\alpha} = \tanh^{-1} \alpha, \quad \text{where} \quad \alpha = \left| \frac{a-b}{1-a\overline{b}} \right|, \quad a,b \in \Delta.$$

Note that on H_n , the Carathéodory distance and the Kobayashi distance are the same.

For n = 1, $H_1 = \Delta$, and by Schwarz-Pick Theorem, $C(a, b) = \rho(a, b)$, $a, b \in \Delta$, and $||z|| = |z|, z \in \Delta$, and since, cf. [4, Lemma 2.1],

(1.1)
$$\rho(z,a) = R \Leftrightarrow |z-b| = r, \quad a,b,z \in \Delta,$$

where

(1.2)
$$b = a \frac{1-\alpha^2}{1-\alpha^2 |a|^2}$$
 and $r = \alpha \frac{1-|a|^2}{1-\alpha^2 |a|^2}$, $\alpha = \tanh R$,

it follows that in H_1 every ball (i.e. disk) in the Carathéodory distance on H_1 is a ball with respect to the ℓ_1 norm in \mathbb{C} .

A general theorem on Carathéodory distance on normed spaces, cf. [2, Theorem IV 1.8] implies that every ball in the Carathéodory distance on H_n , $n \ge 1$, which is centered at the origin is a ball in the ℓ_1 norm of \mathbb{C}^n . The following result of Binyamin Schwarz shows that in \mathbb{C}^2 Carathéodory balls of H_2 which are centered off the origin are not balls in the ℓ_1 norm of \mathbb{C}^2 .

THEOREM A ([4, Theorem 3.1]): The only balls in $H_2 = \{z \in \mathbb{C}^2 : ||z|| < 1\}$ in the Carathéodory distance on H_2 which are balls in the ℓ_1 norm in \mathbb{C}^2 are those which are centered at the origin.

The following geometric lemma which Schwarz establishes in [4] is repeatedly applied in the proof of Theorem A.

LEMMA ([4, Lemma 2.4]): Let γ_1 and γ_2 be circles in the complex plane \mathbb{C} ,

$$\gamma_k = \{ z : z = z_k(\varphi) = a_k + r_k e^{i(\varphi + \nu_k)}, r_k > 0, -\infty < \varphi < \infty \}, \quad k = 1, 2.$$

Then, a necessary and sufficient condition for the existence of two points ζ_1 and ζ_2 in \mathbb{C} and real numbers ν_1 and ν_2 such that the equality

$$\sum_{k=1}^{2} |z_{k}(\varphi) - \zeta_{k}| = \text{ constant } \quad \text{ for } -\infty < \varphi < \infty$$

holds, is $\zeta_k = a_k, k = 1, 2$.

It is conjectured in [4] that the statement stated in the lemma holds for any number $n \ge 2$ of circles γ_k and points ζ_k , and it is pointed out that the generalization of the lemma for $n \ge 2$ would imply a generalization of the theorem for H_n , $n \ge 2$, with a proof virtually the same as the one brought in [4] for H_2 .

The purpose of this note is to show that, indeed, the lemma and the theorem hold for any number $n \ge 2$. An extension of the lemma is contained in the following proposition.

The novelty of this note is in the proof of the proposition. The proof of the extension of Theorem A for $n \ge 2$ is the same as in [4], though set up differently.

2. A proposition

PROPOSITION: Given

(i) *n* circles $\gamma_k = \{z \in \mathbb{C} : |z - a_k| = r_k > 0\}, k = 1, \dots, n,$

(ii) n points z_1, \ldots, z_n in motion such that the point z_k moves along γ_k with state equation

$$z_k(t) = a_k + r_k e^{i(t+\nu_k)}, \quad -\infty < t < \infty, \quad k = 1, ..., n,$$

where the phases ν_1, \ldots, ν_n are given,

- (iii) *n* points b_1, \ldots, b_n in \mathbb{C} ,
- (iv) *n* real positive numbers $\lambda_1, \ldots, \lambda_n$ and a real positive number *c* such that

(2.1)
$$\sum_{k=1}^{n} \lambda_k |z_k(t) - b_k| \equiv c, \quad -\infty < t < \infty,$$

then $a_k = b_k$ for all $k = 1, \ldots, n$.

Proof of the Proposition: If for some $k, a_k = b_k$ as desired, then the term $|z_k(t)-b_k|$ yields a constant contribution to the sum in (2.1), and may be dropped. We thus may assume that $a_k \neq b_k$ for all $k = 1, \ldots, n$. By rotating, translating, rescaling and renaming the constants c, λ_k, b_k and ν_k we may assume that for all $k = 1, \ldots, n, a_k = 0, r_k = 1$ and b_k is real and positive. Then $|z_k(t)| = 1$, arg $z_k(t) = t + \nu_k$, and by the Cosine Theorem, (2.1) becomes

(2.2)
$$\sum_{k=1}^{n} \lambda_k \left(1 + b_k^2 - 2b_k \cos(t + \nu_k) \right)^{1/2} \equiv c, \quad -\infty < t < \infty$$

Isr. J. Math.

or

(2.3)
$$\sum_{k=1}^{n} f_k(t) \equiv c, \quad -\infty < t < \infty,$$

where

(2.4)
$$f_k(t) = \lambda'_k (A_k - \cos(t + \nu_k))^{1/2}, \quad k = 1, \dots, n,$$

and where $\lambda'_k = \lambda_k (2b_k)^{1/2}$ and $A_k = \frac{1}{2}(b_k + b_k^{-1})$. As $b_k > 0, A_k \ge 1$. Now let

(2.5)
$$\varphi_k(z) = A_k - \cos(z + \nu_k), \quad z \in \mathbb{C}, \quad k = 1, \dots, n, \text{ and }$$

(2.6)
$$Z_k = \{z \in \mathbb{C} : \varphi_k(z) = 0\}, \quad k = 1, \dots, n\}$$

Then $A_k = 1 \Rightarrow Z_k = \{w_k + 2m\pi : m \in Z\}$ for some real number w_k , and $A_k > 1 \Rightarrow Z_k = \{w_k + 2m\pi : m \in Z\} \cup \{\bar{w}_k + 2m\pi : m \in Z\}$ for some non-real number w_k in \mathbb{C} .

We may assume that $\varphi_j \neq \varphi_k$ for all $j \neq k$, since otherwise the corresponding terms in (2.3) may be grouped together. Then $A_j \neq A_k$ or $\nu_j \neq \nu_k \pmod{2\pi}$ for $j \neq k$. In the first case $|\text{Im } w_j| \neq |\text{Im } w_k|$, and in the latter case $\text{Re } w_j \neq$ $\text{Re } w_k \pmod{2\pi}$ for any $w_j \in Z_j$ and $w_k \in Z_k$ with $j \neq k$. Therefore

(2.7)
$$Z_j \cap Z_k = \phi \text{ for all } j \neq k.$$

Suppose now that $A_j = 1$. Then $\varphi_j(-\nu_j) = 0$ and $\varphi_k(-\nu_j) \neq 0$ for all $k \neq j$. Then $f_k(t) = \lambda'_k \varphi_k(t)^{1/2}$ is real analytic at $t = -\nu_j$, for all $k, k \neq j$, and by (2.3) so is $\sum_{k=1}^n f_k(t)$. Hence, also $f_j(t)$ must be real analytic at $t = -\nu_j$. But f_j is not real analytic (it is not even differentiable) at $t = -\nu_j$, since $f_j(t) = \lambda'_j (1 - \cos(t + \nu_j))^{1/2} = \lambda'_j 2^{1/2} |\sin \frac{1}{2}(t + \nu_j)|$. This contradiction shows that $A_k > 1$ for all $k = 1, \ldots, n$.

To complete the proof fix $j, 1 \leq j \leq n$, and choose a point w such that $\varphi_j(w) = 0$. Since $A_j > 1$, w is not real, and by (2.7), $\varphi_k(w) \neq 0$ for all $k \neq j$. Choose a real number t_0 . Since $A_k > 1$ for all $k = 1, \ldots, n$ it follows that $\varphi_k(t_0) \neq 0$ for all $k = 1, \ldots, n$. We can, therefore, find a simply connected neighborhood U of t_0 such that $\varphi_k(z) \neq 0$ for all $z \in U$ and all $k = 1, \ldots, n$.

64

Next, choose a path γ in $\mathbb{C} \setminus \bigcup_{k=1}^{n} Z_k$ which starts and ends at t_0 , winds once around the point w and does not wind around any other point of $\bigcup_{k=1}^{n} Z_k$. Now, for $k = 1, \ldots, n$, let $F_k(z)$ be an analytic branch of $\lambda'_k \varphi_k(z)^{1/2}$ such that $F_k(t) = f_k(t)$ for all real numbers t in U (see 2.4) and (2.5)). Such branches exist since $\varphi_k(z) \neq 0$ for all $z \in U$ and $k = 1, \ldots, n$, and since U is simply connected. Finally, set $F_0(z) = \sum_{k=1}^{n} F_k(z)$. Then $F_0(z)$ is analytic in U, and $F_0(t) = \sum_{k=1}^{n} f_k(t)$ for all real numbers t in U. Therefore, by (2.3),

(2.8)
$$F_0(z) \equiv c \quad \text{in } U.$$

For k = 0, 1, ..., n, let $G_k(z)$ denote the analytic function in U which is obtained by continuing $F_k(z)$ along γ .

The point w is a simple zero of $\varphi_j(z)$, and γ winds once around w and does not wind around any other zero of $\varphi_j(z)$. Therefore $G_j(z) = -F_j(z)$. For any other $k, 0 < k \neq j, \gamma$ does not wind around any zero of $\varphi_k(z)$. Hence $G_k(z) = F_k(z)$ for all $0 < k \neq j$. In view of (2.8), $G_0(z) \equiv c$ in U, and by the Permanence Theorem, $G_0(z) = \sum_{k=1}^n G_k(z)$. Hence $F_j(z) = \frac{1}{2} (F_0(z) - G_0(z)) \equiv 0$ in U. Then $f_j(t) = 0$ for all real numbers t in U, and thus $\lambda_j = 0$, contradicting assumption (iv) of the proposition. This completes the proof.

3. Carathéodory balls and norm balls

THEOREM: Let $n \ge 2$. The only balls in $H = \{z \in \mathbb{C}^n : ||z||_1 < 1\}$ in the Carathéodory distance on H, which are balls in the ℓ_1 norm in \mathbb{C}^n , are those which are centered at the origin.

In proving the theorem use will be made of the proposition and the following two lemmas which are quoted from [3, Lemma 1] and [4, Lemma 2.2], cf. [1], [2] and [5]. In the sequel ||a|| will stand for the ℓ_1 norm $||a||_1$, of $a = (a_1, \ldots, a_n) \in \mathbb{C}^n$.

LEMMA 1: Let $\zeta \in \mathbb{C}$, and let $a = (a_1, ..., a_n) \in H$ be such that $(a_1, ..., a_{j-1}, \zeta, a_{j+1}, ..., a_n) \in H$. Then (3.1) $C((a_1, ..., a_{j-1}, \zeta, a_{j+1}, ..., a_n), (a_1, ..., a_n)) = \rho(u_i^{-1}\zeta, u_i^{-1}a_j),$

(3.2)
$$u_j = 1 - \sum_{\substack{k=1\\k \neq j}}^n |a_k|.$$

LEMMA 2: Let $a \in H$ and $\zeta \in \mathbb{C}$ such that $\zeta a \in H$. Then

$$(3.3) C(\zeta a, a) = \rho(||a||, ||a||\zeta)$$

Proof of the Theorem: For $a \in H$ let

$$B_c(a,r) = \{ z \in H : C(z,a) < r \}, \text{ and } B_N(a,r) = \{ z \in H : ||z-a|| < r \}$$

denote the Carathéodory and the ℓ_1 norm balls, respectively, of radius r centered at a. Suppose that contrary to the statement of the theorem there are points $a \in H \setminus \{0\}$ and $a^N \in H$, and real numbers $0 < \alpha < 1$ and $r_N > 0$ such that

$$(3.4) B_N(a^N,r_N) = B_C(a,r) \subset H,$$

where

$$(3.5) r = \tanh^{-1} \alpha.$$

Then $\partial B_N(a^N, r_n) = \partial B_C(a, r) \subset H$, where the inclusion follows from the fact that H is bounded and convex, cf. [1, p. 88].

We will show that this assumption leads to a contradiction by considering certain one dimensional subsets of $\partial B_C(a, r)$, which correspond to the following subsets of \mathbb{C} :

(3.6)
$$A_j = \{\zeta \in \mathbb{C} : (a_1, \ldots, a_{j-1}, \zeta, a_{j+1}, \ldots, a_n) \in \partial B_C(a, r)\}, \quad j = 1, \ldots, n,$$

and

$$(3.7) B = \{\zeta \in \mathbb{C} : \zeta a \in \partial B_C(a, r)\},$$

where r is given in (3.5).

First note that for $\zeta \in A_j$, $j = 1, \ldots, n$,

$$C((a_1,\ldots,a_{j-1},\zeta,a_{j+1},\ldots,a_n),(a_1,\ldots,a_n))=r.$$

This and Lemma 1 imply

$$ho\left(u_{j}^{-1}\zeta, u_{j}^{-1}a_{j}
ight) = r = anh^{-1}lpha, \quad u_{j} = 1 - \sum_{\substack{k=1 \ k \neq j}}^{n} |a_{k}|.$$

Therefore, all points $u_j^{-1}\zeta$, $\zeta \in A_j$, lie on an hyperbolic circle in Δ , hyperbolically centered at the point $u_j^{-1}a_j$, which by (1.1) is also a Euclidean circle, whose center and radius can be computed with the aid of (1.2). Hence A_j is a Euclidean circle too which is given by

(3.8)
$$A_j = \left\{ \zeta = \frac{(1-\alpha^2)u_j^2}{u_j^2 - \alpha^2 |a_j|^2} \cdot a_j + \alpha u_j \frac{u_j^2 - |a_j|^2}{u_j^2 - \alpha^2 |a_j|^2} e^{i\varphi} : 0 \le \varphi \le 2\pi \right\}$$

where u_j is given in (3.2).

Suppose, as above, that $\partial B_C(a,r) = \partial B_N(a^N,r_N)$, for some $a^N \in H$ and $r_N > 0$. Fix $j, j = 1, \ldots, n$. Then for all $\zeta \in A_j$

(3.9)
$$r_N = ||(a_1, \ldots, a_{j-1}, \zeta, a_{j+1}, \ldots, a_n) - a^N|| = |\zeta - a_j^N| + \sum_{\substack{k=1 \ k \neq j}}^n |a_k - a_k^N|.$$

Since $\zeta \in A_j$ and A_j is a circle, and since all r_N, a_k and a_k^N are constants, it follows that a_i^N must coincide with the center of A_j . Therefore, by (3.8),

(3.10)
$$a_j^N = \frac{(1-\alpha^2)u_j^2}{u_j^2 - \alpha^2 |a_j|^2} \cdot a_j, \quad j = 1, \dots, n$$

where u_j is given by (3.2). As a corollary, we get

$$(3.11) a_j = 0 \text{if and only if } a_j^N = 0.$$

Next consider the set B of (3.7). Then, by Lemma 2 and (3.5), $\zeta \in B$ if and only if

$$\tanh^{-1} \alpha = C(\zeta a, a) = \rho(||a||\zeta, ||a||).$$

Consequently, the points $||a||\zeta$, $\zeta \in B$, lie on an hyperbolic circle in Δ , hyperbolically centered at the point ||a||. By (1.1) this is also a Euclidean circle. Hence B is a circle in Δ which, in view of (1.2), is given by

$$(3.12) B = \{\zeta = \lambda + Re^{i\varphi} : 0 \le \varphi \le 2\pi\},$$

where

(3.13)
$$\lambda = \frac{1 - \alpha^2}{1 - \alpha^2 ||a||^2} \quad \text{and} \quad R = \frac{\alpha}{||a||} \cdot \frac{1 - ||a||^2}{1 - \alpha^2 ||a||^2}.$$

Hence for all $\zeta \in B$,

(3.14)
$$\zeta a = (\lambda + Re^{i\varphi})a$$
 and $\zeta a_k = \lambda a_k + R_k e^{i(\varphi + \psi_k)}, \quad 0 \le \varphi \le 2\pi$

where

(3.15)
$$R_k = \alpha \frac{|a_k|(1-||a||^2)}{||a||(1-\alpha^2||a||^2)} \text{ and } \psi_k = \arg a_k, \quad k = 1, \dots, n.$$

Suppose again that $\partial B_C(a,r) = \partial B_N(a^N,r_N)$. Then for $\zeta \in B$, $\zeta a \in \partial B_C(a,r)$, and by (3.12), (3.13), (3.14) and (3.15)

$$r_{N} = \|\zeta a - a^{N}\| = \sum_{k=1}^{n} \left| \lambda a_{k} + R_{k} e^{i(\varphi + \psi_{k})} - a_{k}^{N} \right|, \quad 0 \le \varphi \le 2\pi$$

Then by the proposition,

(3.16)
$$a_k^N = \lambda a_k, \quad k = 1, \dots, n, \text{ and } a^N = \lambda a,$$

where λ is given by (3.13).

We now consider two cases:

CASE 1: $a_j \neq 0$ and $a_k \neq 0$ for some $1 \leq j < k \leq n$.

CASE 2: $a_j \neq 0$ for some $1 \leq j \leq n$ and $a_k = 0$ for any other $k \neq j$.

Suppose that we are in Case 1. With no loss of generality we may assume $a_1 \neq 0$, and that $a_k \neq 0$ for some $2 \leq k \leq n$. Using (3.10), (3.16) and (3.13) for a_1^N we get

(3.17)
$$\frac{(1-\alpha^2)}{u_1^2 - \alpha^2 |a_1|^2} \cdot u_1^2 a_1 = a_1^N = \frac{1-\alpha^2}{1-\alpha^2 ||a||^2} \cdot a_1$$

where $u_1 = 1 - \sum_{k=2}^{n} |a_k|$ is as in (3.2). Since $a_1 \neq 0$ and $0 < \alpha < 1$, (3.17) gives

$$u_1^2(1 - \alpha^2 ||a||^2) = u_1^2 - \alpha^2 |a_1|^2.$$

By using again the fact that $\alpha \neq 0$ we get $u_1 ||a|| = |a_1|$, which is equivalent to

$$\left(1 - \sum_{k=2}^{n} |a_k|\right) \left(|a_1| + \sum_{k=2}^{n} |a_k|\right) - |a_1| = 0$$

or to

$$\left(\sum_{k=2}^n |a_k|\right) \left(1 - \sum_{k=1}^n |a_k|\right) = 0.$$

||a|| < 1 and $a_k \neq 0$ for some $2 \le k \le n$ imply that each factor $\neq 0$, thus leading to a contradiction.

Suppose now that we are in Case 2. With no loss of generality we may assume that $a_2 \neq 0$ and that $a_k = 0$ for all other $k \neq 2$. Then $a = (0, a_2, 0, ..., 0)$. By (3.2) $u_2 = 1$, and by (3.10)

(3.18)
$$a_2^N = \frac{1-\alpha^2}{1-\alpha^2|a_2|^2} \cdot a_2$$
 and $a_k^N = 0$ for all $k \neq 2$.

Consider the set A_1 of (3.6) with j = 1 for $a = (0, a_2, 0, ..., 0)$. Then, by (3.2), $u_1 = 1 - |a_2|$, and by (3.8), $\zeta \in A_1$, and $(\zeta, a_2, 0, ..., 0) \in \partial B_C(a, r)$, if and only if

(3.19)
$$\zeta = \alpha (1 - |a_2|) e^{i\varphi}, \quad 0 \le \varphi \le 2\pi.$$

Assuming $\partial B_C(a, r) = \partial B_N(a^N, r_N)$, it follows that

$$r_N = ||a^N - (\zeta, a_2, 0, \dots, 0)|| = |\zeta| + |a_2^N - a_2|$$

and by (3.19) and (3.18) we get

(3.20)
$$r_N = \alpha (1 - |a_2|) + \alpha^2 |a_2| \frac{1 - |a_2|^2}{1 - \alpha^2 |a_2|^2}.$$

We now compute r_N by considering the set B of (3.7). If $\zeta \in B$, then $\zeta a \in \partial B_C(a,r) = \partial B_N(a^N,r_N)$. Here $a = (0,a_2,0,\ldots,0), \zeta a = (0,\zeta a_2,0,\ldots,0)$ and by (3.10) and (3.11), $a^N = (0,a_2^N,0,\ldots,0)$. Therefore, in view of (3.14),

$$r_N = \|\zeta a - a^N\| = |\zeta a_2 - a_2^N| = \left|\lambda a_2 + R_2 e^{i(\varphi + \psi_2)} - a_2^N\right|, \quad 0 \le \varphi \le 2\pi.$$

Hence, $\lambda a_2 - a_2^N = 0$, and, consequently, $r_N = |R_2|$. Then, by (3.15)

(3.21)
$$r_N = \alpha \frac{1 - |a_2|^2}{1 - \alpha^2 |a_2|^2}.$$

Now, by subtracting the expression for r_N in (3.21) from the expression for r_N in (3.20), we get

$$\frac{\alpha(1-\alpha)|a_2|(1-|a_2|)}{1+\alpha|a_2|}=0,$$

which is impossible since all factors are positive as $0 < \alpha < 1$ and $0 < |a_2| < 1$. This completes the proof. Remark: After this paper was accepted for publication the editors informed the author of an alternative proof of the main theorem given by W. Zwonek. Zwonek's paper appears in this volume.

ACKNOWLEDGEMENT: The author wishes to thank Binyamin Schwarz and Dov Aharonov for their comments.

References

- S. Dineen, The Schwarz Lemma, Oxford Mathematical Monograph. Clarendon Press, 1989.
- [2] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland, Amsterdam, 1980.
- [3] B. Schwarz, Bounds for the Carathéodory distance of the unit ball, Linear and Multilinear Algebra 32 (1992), 93-101.
- [4] B. Schwarz, Carathéodory balls and norm balls of the domain $H = \{z_1, z_2\} \in \mathbb{C}^2 : |z_1| + |z_2| < 1\}$, Israel Journal of Mathematics 84 (1993), 119–128.
- [5] E. Vesentini, Complex geodesics, Compositio Mathematica 44 (1981), 375-394.