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ABSTRACT 

It is shown t h a t  t h e  only balls in the  Cara thdodory  d is tance  on Hn -- 

~z E C n : IIZlll < I}, n _> 2, which are  balls wi th  respect  to t he  £1 no rm in 

C a are those  centered at  t h e  origin. 

1. In troduct ion  

Consider the unit ball 

H = Hn = {z • C~:  Ilzll l < 1} 

in the complex n-space C ~ with respect to the metric which is induced by the t l  

norm in C ~ 

Ilzll = Ilzl l l  = ~ l ~ k l ,  z = ( Z i , . . . , Z n )  • C ~ .  
k = l  

Next consider the Carathdodory distance C = CH on H 

C(z,  w) = sup p(f (z) ,  f(w)),  z, w e H, 
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where the supremum is taken over all holomorphic functions f from H into the 

unit disk 

A = { z e C : [ z  l <  1} 

of the complex plane C. Here p is the hyperbolic distance on A: 

a - b ]  1 l + a  = t a n h -  l a ,  where a =  ~ , a, b E A .  p(a,b)= ~ l O g l _ a  

Note that  on Hn, the Carathdodory distance and the Kobayashi distance are the 

same. 

For n = 1, H1 = A, and by Schwarz-Pick Theorem, C(a, b) = p(a, b), a, b E A, 

and [[z[[ = Iz[, z e A, and since, cf. [4, Lemma 2.1], 

p ( z , a ) = R e * l z - b l = r  , a,b, z e A ,  (1.1) 

where 

(1.2) 
1 - a 2 1 - [a[  2 

b = a  and r = a  a = t a n h R ,  
1 -  21al2 1 -  21al2' 

it follows that  in H1 every ball (i.e. disk) in the Carathdodory distance on H1 is 

a ball with respect to the el norm in C. 

A general theorem on Carathdodory distance on normed spaces, el. 

[2, Theorem IV 1.8] implies that every ball in the Carathdodory distance on 

Hn, n _> 1, which is centered at the origin is a ball in the gl norm of ~ .  The 

following result of Binyamin Schwarz shows that in C 2 Carath~odory balls of H2 

which are centered off the origin are not balls in the gl n o r m  of C 2. 

THEOREM A ([4, Theorem 3.1]): The only balls in H2 = {z e C 2 : I lz l l  < 1} in 

the Carathdodory distance on H2 which are balls in the gl norm in C 2 are those 

which are centered at the origin. 

The following geometric lemma which Schwarz establishes in [4] is repeatedly 

applied in the proof of Theorem A. 

LEMMA ([4, Lemma 2.4]): Let "h and "r2 be circles in the complex plane C, 

~ / k = { z : z = z k ( ~ f l ) = a k + r k e i ( ~ + " ~ ) , r k > O , - - o o < ~ < o o } ,  k =  1,2. 

Then, a necessary and sufficient condition for the existence of two points ~1 

and (2 in C and real numbers ul and u2 such that  the equality 

2 

E [zk(~o) - ~k[ = constant for - oo < ~o < oo 
L - - 1  
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holds, is (k = ak, k = 1, 2. 

It  is conjectured in [4] that  the statement stated in the lemma holds for any 

number n > 2 of circles 7k and points (k, and it is pointed out that  the general- 

ization of the lemma for n > 2 would imply a generalization of the theorem for 

Hn, n _> 2, with a proof virtually the same as the one brought in [4] for H2. 

The purpose of this note is to show that,  indeed, the lemma and the theorem 

hold for any number n > 2. An extension of the lemma is contained in the 

following proposition. 

The novelty of this note is in the proof of the proposition. The proof of the 

extension of Theorem A for n >_ 2 is the same as in [4], though set up differently. 

2. A p r o p o s i t i o n  

PROPOSITION: Given 

(i) n c i r c l e s ~ k = { z E C : [ z - - a k [ = r k > O } ,  k = l , . . . , n ,  

(ii) n points Zx, . . . ,  zn in motion such that the point zk moves along ~k with 

state equation 

z k ( t ) = a k  + rke i(t+Èk), - - ~ < t < o e ,  k = l , . . . , n ,  

where the phases Vl, . . .  , V n are given, 

(iii) n points b l , . . . ,  b, in C, 

(iv) n real positive numbers A1,. . . ,  An and a real positive number e such that 

(2.1) ~ Aklzk(t)--bkl -- C, --oz < t < ~ ,  
k----1 

then ak = bk for all k = 1 , . . . ,  n. 

Proof  of the Proposition: If for some k, ak = bk as desired, then the term 

Izk(t)--bkl yields a constant contribution to the sum in (2.1), and may be dropped. 

We thus may assume that  ak ~ bk for all k = 1 , . . . ,  n. By rotating, translating, 

rescaling and renaming the constants c, Ak, bk and vk we may assume that  for 

a l l k  = 1 , . . . , n ,  ak = 0, rk = l a n d b k  is real and positive. Then ]z~(t)l = 1, 

arg zk(t) = t + Vk, and by the Cosine Theorem, (2.1) becomes 

n 

(2.2) E A k ( l + b 2 k - - 2 b k e o s ( t + u k ) ) l / 2 - - c ,  --c~ < t < cc 
k-----1 
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o r  

(2.3/ 

where 

(2.4) 

U. SREBRO Isr. J. Math.  

~-~.fk(t) =- c, - ~  < t < oo, 
k----1 

fk(t) = A~(Ak-cos ( t  + uk)) 1/2, k = 1 , . . . , n ,  

and where A~ = Ak(2bk) 1/2 and Ak = ½(bk + b~-l). As bk > 0, Ak >_ 1. 

Now let 

(2.5) ~ k ( z ) = A k - - c o s ( z + u k ) ,  z 6 C ,  k = l , . . . , n ,  and 

(2.6) Z k = { z 6 C : g k ( z ) = O } ,  k = l , . . . , n .  

Then Ak = 1 ~ Zk = (Wk + 2mr : m 6 Z} for some real number Wk, and 

Ak > 1 ~ Zk = {w~ + 2m~r : m 6 Z} U (Wk + 2m~r : m 6 Z} for some non-real 

number wk in C. 

We may assume that ~j ~ ~k for all j ~ k, since otherwise the corresponding 

terms in (2.3) may be grouped together. Then Aj ~ A~ or uj ~ uk(mod2~r) 

for j ~ k. In the first case IImwjl ~ IImwkh and in the latter case Rewj  

Rewk(mOd2~r) for any wj 6 Zj and wk E Zk with j ~ k. Therefore 

(2.7) Z j A Z k = ¢  for all j ~ k .  

Suppose now that Aj = 1. Then ~oj(-uj) -- 0 and ~k(--uj) ~ 0 for all k ~ j .  

Then fk(t)  = A~k( t )  1/2 is real analytic at t = --vj, for all k, k ~ j ,  and by 

(2.3) so is ~k---1 fk(t). Hence, also f j ( t )  must be real analytic at t = - v j .  But 

f j  is not real analytic (it is not even differentiable) at t = - P j ,  since f j ( t )  = 

A~ (1 - cos(t + vj)) 1/2 = A~21/21 sin ½(t + vj) I. This contradiction shows that 

Ak > 1 for all k = 1 , . . . , n .  

To complete the proof fix j,  1 < j _< n, and choose a point w such that 

~j(w) = 0. Since Aj > 1, w is not real, and by (2.7), ~ok(w) # 0 for all k ~ j .  

Choose a real number to. Since Ak > 1 for all k = 1 , . . . ,  n it follows that 

~k(to) ~ 0 for all k = 1 , . . . , n .  We can, therefore, find a simply connected 

neighborhood U of to such that ~k(z) ~ 0 for all z 6 U and all k = 1 , . . . , n .  
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Next, choose a path 3' in C \  U~=I Zk which starts and ends at to, winds once 

around the point w and does not wind around any other point of (J~=l Zk. 

Now, for k = 1 , . . . ,  n, let Fk(z) be an analytic branch of A~k(z)  1/2 such that 

Fk(t) = fk(t)  for all real numbers t in U (see 2.4) and (2.5)). Such branches 

exist since ~k(z) # 0 for all z E U and k = 1 , . . . , n ,  and since U is simply 

connected. Finally, set Fo(z) = ~ = 1  Fk(z). Then Fo(z) is analytic in U, and 

Fo(t) = ~'k=l fk( t )  for all real numbers t in U. Therefore, by (2.3), 

(2.8) Fo(z) = c in U. 

For k = 0, 1 , . . . , n ,  let Gk(z) denote the analytic function in U which is 

obtained by continuing Fk(z) along 3'. 

The point w is a simple zero of ~j(z), and 3' winds once around w and does not 

wind around any other zero of Tj(z) .  Therefore Gj(z)  = - F j ( z ) .  For any other 

k,0 < k # j,3' does not wind around any zero of ~k(z). Hence Gk(z) = Fk(z) 

for all 0 < k # j .  In view of (2.8), Go(z) - c in U, and by the Permanence 
n Theorem, Go(z) = ~ k = l  Gk(z).  Hence Fj(z) = ½ ( F o ( z ) -  Go(z)) =- 0 in U. 

Then f j ( t )  = 0 for all real numbers t in U, and thus Aj = 0, contradicting 

assumption (iv) of the proposition. This completes the proof. | 

3. C a r a t h ~ o d o r y  balls a n d  n o r m  balls 

THEOREM: Let n > 2. The only balls in H = {z E ~ : IIzlll < 1} in the 

Carathdodory distance on H, which are balls in the ~1 norm in C ~, are those 

which are centered at the origin. 

In proving the theorem use will be made of the proposition and the following 

two lemmas which are quoted from [3, Lemma 1] and [4, Lemma 2.2], cf. [1], [2] 

and [5]. In the sequel IlaEI will stand for the ~1 norm Ifalll, of a = ( a h . . . , a n )  

LEMMA 1: Let ~ E C, and let a = ( a l , . . . , a n )  E H be such that 

( a l , . . . , a j - l , ~ , a j + l , . . . , a , ~ )  E H. Then 

C ( ( a l  . . . .  aj- l ,¢ ,a jT1, . . .an) , (a l , . . . ,an))  = p(U;I( ,u; laj) ,  (3.1) 

where 

(3.2) 
n 

k#j 
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LEMMA 2: Let a E H and ( E C such that (a E H. Then 

(3.3) C((a, a) = p ( I b l l ,  I l a l l ¢ )  • 

Proof of the Theorem: For a E H let 

Bc(a,r) = {z E H: C(z,a) < r}, and BN(a,r) = {z E H :  IIz- all < r} 

denote the Carath~odory and the ~1 norm balls, respectively, of radius r centered 

at a. Suppose that contrary to the statement of the theorem there are points 

a E H\{0} and a ~ 6 H, and real numbers 0 < a < 1 and rN > 0 such that 

BN (aN,rN) = Bc(a,r) C H, (3.4)  

where 

(3.5) r -- tanh -1 a. 

Then OBN(a N, rn) = OBc(a, r) C H,  where the inclusion follows from the fact 

that H is bounded and convex, cf. [1, p. 88]. 

We will show that  this assumption leads to a contradiction by considering 

certain one dimensional subsets of OBc(a, r), which correspond to the following 

subsets of E: 

(3.6) A j = { ( 6 C : ( a l , . . . , a j _ l , ( , a j + l , . . . , a n )  6cOBc(a,r)}, j = l , . . . n ,  

and 

(3 .7)  B = { ( 6  C :  Ca 6 OBc(a,r)}, 

where r is given in (3.5). 

First note that  for ( 6 A j,  j = 1 , . . . , n ,  

C ( ( a l , . . . , a j - l , ¢ , a j 4 - 1 , . . . , a n ) , ( a l , . . . , a n ) )  : r .  

This and Lemma 1 imply 

p  Tiaj ) = r = t a n h  -1  u j = l - ~ i a k l .  
k=l 
kg~j 



Vol. 89, 1995 CARATHI~.ODORY BALLS AND NORM BALLS 67 

Therefore, all points uyl~,  (: E A s, lie on an hyperbolic circle in A, hyperbolically 

centered at the point u'j las,  which by (1.1) is also a Euclidean circle, whose center 

and radius can be computed with the aid of (1.2). Hence Aj is a Euclidean circle 

too which is given by 

(3.8) J -- iuJ I ~i~ } Aj ~ (1 - a2)u~ u 2 - '~ 
= - u j 2 - a 2 l a j i 2 " a ~ + a u s  u s : - - - : 2 ~ -  a {asl :0<_ ~ <2r_ 

where u i is given in (3.2). 

Suppose, as above, that OBc(a , r )  = OBiv(alV,rlv), for some a N E H and 

rN > 0. Fix j , j  = 1 , . . . , n .  Then for all ~ E Ay 

(3.9) rN = I I (a , , . . .  , a ~ _ : , ¢ , a j + : , . . .  , an)  - aNll = If - a~Yl + ~ lak - aNI. 
k=l  
key 

N Since ( E Aj and Aj is a circle, and since all rN,a~ and a s are constants, it 

follows that a N must coincide with the center of A i. Therefore, by (3.8), 

(1 - ~2)uy 
(3.10) a N =  q _ - ~ 2 " a j '  j = l , . . . , n  

where uj is given by (3.2). As a corollary, we get 

(3.11) aj = 0 if and only if a~Y = 0. 

Next consider the set B of (3.7). Then, by Lemma 2 and (3.5), ( E B if and 

only if 

tanh -1 a = C(~a, a) = p([[a[[¢, [[a[[). 

Consequently, the points [[a[[~, ~ E B, lie on an hyperbolic circle in A, hyperbol- 

ically centered at the point [[a[[. By (1.1) this is also a Euclidean circle. Hence 

B is a circle in A which, in view of (1.2), is given by 

(3.12) 

where 

(3.13) 

B-- {(= A + Re i~ : 0 <_ ~o <_ 21r}, 

1 -- O~ 2 
A - and R = 

1 - ~ l l a l f  2 
1 - I l a l l  ~ 

{lall 1 - ~211a112" 
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Hence for all ~ E B, 

(3.14) ~a = (~-t- R e ~ ) a  and i a k =  &ak -t- Rke i(~+¢~), 0 < ~o < 27r 

where 

(3.15) Rk=c~ lakl(1-11all2) and C k =  a rgak ,  k = l , . . . , n .  
I la l l (1 - o~l la l l  2) 

Suppose again that OBc(a,r )  = OBN(aN, rN). Then for ~ C B, 

~a e OBc(a, r), and by (3.12), (3.13), (3.14) and (3.15) 

rN = II~a - agll = ~ )~ak -t- Rke i(~+¢k) - a N , 0 < ~o < 2~r. 
k - ~ l  

Then by the proposition, 

(3.16) a N = ~ak, k = 1 , . . . , n ,  and a N : )~a,  

where A is given by (3.13). 

We now consider two cases: 

CASE 1: a j ¢ 0 a n d a k ¢ 0 f o r s o m e l < j < k < n .  

CASE2: aj ¢ 0 f o r s o m e l < j < n a n d a k = 0 f o r a n y o t h e r k ~ j .  

Suppose that  we are in Case 1. With no loss of generality we may assume 

al ~ 0, and that ak # 0 for some 2 < k < n. Using (3.10), (3.16) and (3.13) for 

a N we get 

( 1  - o~ 2 )  1 - 5 2 

(3.17) u~-_-2--~1112 • u2al ---- aN ---- 1 -- o~llal[ 2 - a l  

where ul = 1 - ~ = 2  lakl is as in (3.2). Since al ~ 0 and 0 < c~ < 1, (3.17) gives 

~ ( 1  - ~211all 2) ---- u~ - ~21all ~ 

By using again the fact that a # 0 we get ulllall = [all, which is equivalent to 

n 
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or to 
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0 

IlaN < 1 and ak # 0 for some 2 < k < n imply that each factor # 0, thus leading 

to a contradiction. 

Suppose now that we are in Case 2. With no loss of generality we may assume 

that  a2 # 0 and that ak = 0 for all other k ~ 2. Then a = (0 , a2 ,0 , . . . , 0 ) .  By 

(3.2) u2 = 1, and by (3.10) 

1 - c~ 2 
(3.18) a N =  1--a21a2I 2"a2  and a N = 0  for a l l k ¢ 2 .  

Consider the set A1 of (3.6) with j = 1 for a = (0, a2, 0 , . . . ,  0). Then, by (3.2), 

ul = 1 -]a21, and by (3.8), ( C A1, and (¢,a2,0 . . . .  ,0) E O B c ( a , r ) ,  if and only 

if 

(3.19) ~ = c~(1 - l a e t ) e  i~, 0 _< ~ < 27r. 

Assuming OBc(a ,  r) = O B g ( a  N, r g  ), it follows that 

r N  = l i e  N - -  ( ~ , a 2 , 0 , . . . , O ) t  I = I¢l + I a N  - a2t  

and by (3.19) and (3.18) we get 

 21a l_-_ la I 2 
(3.20)  rN = a ( 1  -- la=l) + 1 - ~ l  2 a2i 2" 

We now compute rN by considering the set B of (3.7). If ~ E B, then ¢'a E 

O B c ( a , r )  = O B N ( a N , r N ) .  Here a = (0, a2 ,0 , . . . , 0 ) ,Ca  = (0 ,~a2 ,0 , . . . , 0 )  and 

by (3.10) and (3.11), a N = (0, a N, 0 , . . . ,  0). Therefore, in view of (3.14), 

rN = IlCa- aNII = I~a2 - aNI = Aa2 + R2e i(~+¢=) - a N , 0 < ~o < 27r. 

Hence, Aa2 - a N = 0, and, consequently, rN = IR21. Then, by (3.15) 

1 -ta21 = 
(3.21) r N  = a 

1 - c~2la2l 2" 

Now, by subtracting the expression for rN in (3.21) from the expression for rN 

in (3.20), we get 
a ( 1  - a ) l a = l ( 1  - la21) ~0, 

1 + <~la21 

which is impossible since all factors are positive as 0 < ~ < 1 and 0 < la2t < 1. 

This completes the proof. II 
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Remark: After this paper was accepted for publication the editors informed 

the author of an alternative proof of the main theorem given by W. Zwonek. 

Zwonek's paper appears in this volume. 
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